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Abstract

wŽ 5 . Ž . x wŽ 3 . Ž . xh -C H RuCl PPh has been shown to react with hydrogen to give h -C H RuCl PPh initially, and then7 9 3 2 7 11 3 2
w Ž .Ž . x w Ž x Ž .RuCl H PPh , Ru H Cl PPh , and unidentified compound s . This is a rare example of the hydrogenation of a coordinated3 3 2 4 2 3.4
ligand, where the ligand remains coordinated to the metal. It is suggested that the reverse reaction, involving the conversion of
wŽ 3 . Ž . x wŽ 5 . Ž . xh -C H RuCl PPh to h -C H RuCl PPh is a rare example of the loss of dihydrogen from a coordinated ligand. q 19987 11 3 2 7 9 3 2

Elsevier Science S.A.

wŽ 5 . Ž .Ž . xKeywords: h -C H RuCl H PPh ; Dihydrogen; Ligand7 9 3 2

w Ž .Ž . xIt has been previously shown that RuCl H PPh3 3
wŽ 3reacts with cyclohepta-1,3-diene to give initially h -

. Ž . x w Ž 5C H R u C l P P h a n d th e n h -7 1 1 3 2
. Ž . x w x w Ž .Ž . xC H RuCl PPh 1 . Similarly, RuCl H PPh7 9 3 2 3 3

wŽ 3reacts with penta-1,4-diene to give initially h -
. Ž . x wŽ 5 . Ž . xC H RuCl PPh , then h -C H RuCl PPh5 9 3 2 5 7 3 2

wŽ 5 . Ž . x w xand finally h -C H RuCl PPh 2 . This was the5 5 3 2
first observation of the ring closure of a pentadienyl to a
cyclopentadienyl, although it had been earlier suggested

w xas occurring in the mass spectrometer 3 . Subsequently,
w Ž 5the reaction was exploited to synthesise Ru h -2,4-

.Ž 5 .x w x w Ž 5Me C H h -1,3-Me C H 4 , Ru h -1,3-2 5 5 2 5 3
. x w x w Ž 5 .Ž 5Me C H 4,5 , Os h -2,4-Me C H h -1,3-2 5 3 2 2 5 5
.xw x w Ž 5 . x w x w Ž 5Me C H 4 , Os h -1,3-Me C H 4 , Ru h -2 5 3 2 5 3 2

. 5 .x w x w Ž 5 .Ž 5C Me h -1,3-Me C H 5 , Ru h -C Me h -5 5 2 5 3 5 5
.x w x w Ž 5 .Ž 51,2-dihydropentalenyl 5 , and Ru h -C Me h -1,3-5 5

t .x w xBu C H 5 , albeit under much more forcing condi-2 5 3
tions. Similar reactions are rare, but when cyclo-octa-

w Ž . x Ž .1,5-diene reacts with Re CO at 2508C, 1 is formed2 10
w xin a 5% yield 6 , and a similar ring closure has been

Ž .observed on heating 2 in the presence of cyclo-octa-
Ž . Ž . w x1,5-diene to give 3 quantitatively see Scheme 1 7,8 .

The dehydrogenation of a coordinated ligand, which
remains coordinated, is uncommon. Examples are the
dehydrogenation of the alkane chain of

) Corresponding author. E-mail: b.mann@sheffield.ac.uk.
1 Dedicated to Professor P.M. Maitlis on his 65th birthday.

Ž . wŽ 4 . xPh P CH PPh on reaction with h -cod MCl , M2 2 6 2 2
w� Ž .s Rh, Ir, to give trans-Ph P CH CH5CH-2 2 2

Ž . 4 x Ž . w x w � ŽCH PPh MCl , 4 9 , and ReH P C H Me-2 2 2 7 6 4
. 4 x w Ž 44 reacts with pentene to give Re h -3 2

. � Ž . 4 x w x w Ž 4C H H P C H Me-4 10 . When Ni h -1,5-5 8 3 6 4 3 2
.Ž 6 .xcod h -1,3,5-C H is treated with acetylacetone or8 10

cyclopentadiene, the cyclooctatriene ligand is lost and
the 1,5-cod is converted to a 1,2,5-h 3-C H ligand8 13
w x11,12 .

w Ž .Ž . xThe first stage of the reaction of RuCl H PPh is3 3
the insertion of the diene into the Ru–H bond to give an
allyl, and there are many examples of this process. For

w Ž 4 .Ž . xqexample, RuH h -1,5-cod PMe Ph reacts with2 3
w Ž 3 . Ž . xq w x1,3-dienes to give Ru h -enyl Cl PMe Ph 13 .2 3

There is little information available to suggest a
mechanism for the second stage of the reaction. In the

w xoriginal report 1 , it was suggested, by analogy with the
w Ž 3 .Ž 4 .xreaction of Co h -C H h -1,5-cod with cyclo-8 13

w x w Ž 3octa-1,5-diene 7,8 , that the conversion of Ru h -
. Ž . x w Ž 5 . Ž . xC H Cl PPh to Ru h -C H Cl PPh in-7 11 3 2 7 9 3 2

volves the excess of diene acting as a hydrogen accep-
w xtor, but no evidence was presented 1 . In this paper, the

reaction is examined in greater detail. The initial stages
of the reaction have been previously investigated quanti-
tatively and it was shown that there are two reaction

w xpathways 14 . The mechanism which is dominant at
low diene concentration involves the loss of PPh to3

w Ž .Ž . xgive RuCl H PPh which then reacts rapidly with3 2
w Ž 3 . Ž . xthe diene to give Ru h -enyl Cl PPh . A second3 2
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w Ž 3 .Ž 4 .xScheme 1. The reaction of Co h -C H h -1,5-cod with cyclo-8 13
octa-1,5-diene.

mechanism becomes significant at high diene concentra-
tion involving the direct attack of the diene on
w Ž .Ž . xRuCl H PPh . Attempts to extend the kinetic inves-3 3
tigation to the subsequent dehydrogenation failed due to

w xirreproducibility of the results 15 .

1. Results and discussions

w Ž .Ž . xThe reaction of RuCl H PPh with cycloheptadi-3 3
ene has been previously examined. It was found that
w Ž 3 . Ž . xRu h -C H Cl PPh is the first product which7 11 3 2

w Ž 5 . Ž . x w xthen goes on to form Ru h -C H Cl PPh 1 . It7 9 3 2
was suggested that the reduction of the coordinated

Ž 3 . Ž 5 .ligand from h -C H to h -C H was achieved by7 11 7 9
hydrogen transfer to the excess of cyclohepta-1,3-diene
present in solution producing cycloheptene. Attempts to
demonstrate the production of cycloheptene failed due
to the substantial impurity of cycloheptene in the com-

w xmercial cyloheptadiene being used in the reaction 1 .
The reaction has now been repeated using purer cyclo-
hepta-1,3-diene, which was synthesised from cyclohep-
tene by allylic bromination, the isolation of the 3-
bromocycloheptene, and subsequent dehydrobromina-
tion to generate cyclohepta-1,3-diene which contained

w xless than 0.3% cycloheptene 16 . When this purer
cycloheptadiene was used the amount of cycloheptene
formed, as detected using GLC and 1H NMR spec-

w Ž 5troscopy, was less that 10% of the Ru h -
. Ž . xC H Cl PPh formed. Hence, a mechanism involv-7 9 3 2

ing hydrogen transfer from the coordinated allyl ligand
w Ž 5to cyclohep ta-1 ,3 -d iene to g ive R u h -

. Ž . xC H Cl PPh and cycloheptene cannot be correct.7 9 3 2
In order to try to understand the reaction further a
number of kinetic investigations were performed at
358C in CD Cl and monitored by 1H NMR spec-2 2
troscopy. A typical graph of the reaction kinetics is
shown in Fig. 1. It has been shown previously that there

w Ž .Ž . xis a rapid reaction between RuCl H PPh and cy-3 3
w Ž 3c lo h ep tad ien e to g iv e in itia lly R u h -

. Ž . xC H Cl PPh . This initial reaction subsequently7 11 3 2
w xslows as it is poisoned by the liberated PPh 14 .3

Examination of a plot of the 1H NMR signals of
wŽ 3 . Ž . xh -C H RuCl PPh at d 4.05 and d y7.8 and of7 11 3 2

wŽ 5 . Ž . xthe species, h -C H RuCl PPh at d 5.20 and d7 9 3 2
4.65 against time, shows that the reaction goes fast at

Ž . 1first then slows see Fig. 1 . The H NMR signals at d

wŽ 3 . Ž . x4.05 and d y7.8 due to h -C H RuCl PPh7 11 3 2
initially increase rapidly during the first few minutes

and then very slowly decrease. Over the time, 10 to 560
wŽ 3 . Ž . xmin, the concentration of h -C H RuCl PPh is7 11 3 2

nearly constant, decreasing by only about 25%. The
wŽ 5signals at d 5.20 and d 4.65 due to h -

. Ž . xC H RuCl PPh increase rapidly initially. After ap-7 9 3 2
wŽ 5proximately 100 min, the rate of formation of h -

. Ž . xC H RuCl PPh becomes approximately constant.7 9 3 2
It would be expected that the rate of formation of
wŽ 5 . Ž . x wŽ 3h -C H RuCl PPh should be first order in h -7 9 3 2

. Ž . xC H RuCl PPh in the presence of a large excess7 11 3 2
of cyclohepta-1,3-diene if the mechanism involves hy-
drogen transfer to the cyclohepta-1,3-diene. As the con-

wŽ 3 . Ž . xcentration of h -C H RuCl PPh decreases only7 11 3 2
very slowly after its initial rapid formation, the slowing

wŽ 5 . Ž . xin the rate of formation of h -C H RuCl PPh7 9 3 2
must be due to poisoning. There are two possible
poisons, PPh and H . PPh is initially liberated when3 2 3

w Ž .Ž . xthe RuCl H PPh starting material is converted to3 3
wŽ 3 . Ž . xh -C H RuCl PPh . However, when PPh is7 11 3 2 3
added, there is only a small effect on the rate. Attempts
were made to detect liberated hydrogen, but failed. This
is attributed to the small quantity of hydrogen produced
during a typical reaction.

The effect of hydrogen on the reverse reaction was
investigated by passing hydrogen through a solution of
wŽ 5 . Ž . xh -C H RuCl PPh in CD Cl in an NMR tube.7 9 3 2 2 2
When the reaction was carried out below y408C no
reaction was observed. A slow reaction was observed at
y68C. The colour of the solution slowly changed from

wŽ 5 . Ž . xthe yellow of h -C H RuCl PPh to red and sub-7 9 3 2
sequently to violet. The reaction was stopped at the red
stage by placing the NMR tube into a pre-cooled NMR
probe at y808C. The 31 P NMR spectrum showed there

2 Ž31were two resonances at d 65.4 and d 33.8 with J P,
31 .P s33 Hz. This is due to the formation of the allyl

Fig. 1. The plot of intensity of some well-resolved hydrogen NMR
wŽ 3 . Ž . x wŽ 5 . Ž . xsignals of h -C H RuCl PPh and h -C H RuCl PPh ,7 11 3 2 7 9 3 2

monitored by 400 MHz 1H NMR spectroscopy vs. time in CD Cl at2 2
w Ž . x Ž . Ž358C. RuClH PPh 20 mg, 0.022 mmoles , cycloheptadiene 253 3

. Ž . Ž .ml, 0.23 mmoles ; The allyl signals at d 4.05 I , d y7.8 e ,
Ž . Ž .dienyl signals at d 5.20 ` , d 4.65 ^ shown in the figure.
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31 wŽ 3 . Ž . x wŽ 5 . Ž . xFig. 2. 162 MHz P NMR spectrum at 183 K of h -C H RuCl PPh obtained in the reaction of h -C H RuCl PPh with hydrogen7 11 3 2 7 9 3 2
in CD Cl .2 2

wŽ 3 . Ž . xcomplex, h -C H RuCl PPh . The species was7 11 3 2
further confirmed by 1H NMR. A broad signal at d

y7.3 is typical of an agostic hydrogen resonance. The
phosphorus and proton chemical shifts are in good

w x 31agreement with the literature 1 . The P NMR spec-
wŽ 3 . Ž . xtrum of h -C H RuCl PPh is shown in Fig. 2.7 11 3 2

The signal at d 28.5 is due to OPPh .3
On further shaking, and gentle warming, the red

wŽ 5colour solution turned to purple and all the h -
. Ž . xC H RuCl PPh is hydrogenated to give7 9 3 2

w Ž .Ž . x w Ž . x w xRuCl H PPh , Ru H Cl PPh 17 , and an un-3 3 2 4 2 3 4
Ž .known species see Figs. 3 and 4 .
w Ž .Ž . xThe species, RuCl H PPh , was characterised by3 3

31 P NMR, which consists of a triplet at d 95.0, and a
2 Ž31 31 .doublet at d 39.2 with J P, P s29 Hz. The

proton 1H NMR signal at d y18.52, a quartet at room
temperature, is due to the three phosphines becoming

w xequivalent. This is in agreement with the literature 1 .
w Ž xRu Cl H PPh is characterised by comparison of2 2 4 3.4
its 1H and 31 P NMR data with those published for
w � Ž . 4 x w x Ž .Ru Cl H P tol 17 see Table 1 .2 2 4 3 4

It can be seen from Table 1 that the proton and
phosphorus chemical shifts are similar, but not identical
probably due to the differences in the ligand and possi-
bly the concentrations.

w Ž .Ž . x wŽ 5The formation of RuCl H PPh from h -3 3
. Ž . xC H RuCl PPh requires the parallel formation of a7 9 3 2

ruthenium species with one or no PPh ligands. The3
NMR spectrum indeed showed that there were some
minor species produced. A 31 P NMR signal at d 46.0

1 w Ž .Ž . x w Ž . xFig. 3. Partial of H 400 MHz NMR Spectrum of RuCl H PPh and Ru Cl H PPh at y908C. The compounds formed by the reaction3 3 2 2 4 3 4
wŽ 5 . Ž . xof h -C H RuCl PPh with H .7 9 3 2 2
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Table 1
1 31 w Ž . x w � Ž . 4 xComparison of the H and P NMR parameters of Ru Cl H PPh and Ru Cl H P tol2 2 4 3 4 2 2 4 3 4

w Ž . x w � Ž . 4 xRu Cl H PPh in CD Cl at y908C Ru Cl H P C H Me-4 in CD Cl at y958C2 2 4 3 4 2 2 2 2 4 6 4 3 4 2 2
d 1 d 1P NMR data P NMR data

2 31 2 3131 31� Ž . 4 � Ž . 4d 79.9 d, J P, P s37 Hz d 74.2 d, J P, P s40 Hz
2 31 2 3131 31Ž Ž . . Ž Ž . .d 65.0 d, J P, P s17 Hz d 58.3 d, J P, P s20 Hz
2 31 2 3131 31Ž Ž . . Ž Ž . .d 62.1 d, J P, P s35 Hz d 56.3 dd, J P, P s40, 4 Hz

2 31 2 3131 31Ž Ž . . Ž Ž . .d 36.3 dd, J P, P s37, 17 Hz d 33.5 dd, J P, P s40, 20 Hz

1 1H NMR data H NMR data
1 131 31� Ž . 4 � Ž . 4d y7.0 d, J P, H s72 Hz, 1H d y9.2 d, J P, H s72 Hz, 1H

Ž . Ž .d y10.6 hump, 2H d y11.8 hump, 2H
1 131 31� Ž . 4 � Ž . 4d y16.4 t, J P, H s32 Hz, 1H d y19.4 t, J P, H s28 Hz, 1H

and 1H NMR signals at d y7.7 and d y9.8 were
observed, which could be attributed to the formation of
a polyhydride species. Unfortunately, this species was

Ž 5 .not identified. The organic moiety, h -C H , was7 9
converted into cycloheptene, which gives 1H NMR

Ž . Ž . Ž .signals at d 5.80 t , d 2.02 m , d 1.65 m , and d

Ž . Ž .1.50 m partially obscured and cycloheptane which
shows a singlet at d 1.50.

To further investigate the hydrogenation site, D was2
used. D was generated by using the reaction of sodium2
metal in freshly distilled THF containing ca. 2% deu-
terium oxide.

wŽ 5Dideuterium was passed through a solution of h -
. Ž . xC H RuCl PPh in CD Cl at y68C. During the7 9 3 2 2 2

period of bubbling, the solution colour changed from
light yellow to fresh red in several minutes. The bub-
bling was stopped and the sample was put into an ethyl
acetate slush bath at y848C to stop the reaction. The
31 P NMR spectrum at y408C showed two sets of
doublets of doublets indicating the formation of the allyl

Ž .intermediates see Fig. 5 .
The expansion 31 P NMR spectrum clearly shows two

pairs of doublets. The 2 H NMR spectrum showed sig-
nals at d y7.8, 1.3 and 2.0. The signal at d y7.8 is

wŽ 3attributed to the agostic deuterium in h -
. Ž . xC H D RuCl PPh . These observations are consis-7 9 2 3 2

31 w Ž .Ž . xFig. 4. 162 MHz P NMR spectrum of RuCl H PPh and3 3
w Ž . x wŽ 5Ru Cl H PPh at y908C formed by the reaction of h -2 2 4 3 4

. Ž . xC H RuCl PPh with H .7 9 3 2 2

tent with an initial endo addition of the deuterium to
wŽ 5 . Ž . xh -C H RuCl PPh followed by a dynamic pro-7 9 3 2
cess where the ruthenium moves its agostic interaction
from one side to the other of the cycloheptadienyl

Ž .ligand see Scheme 2 . It has been previously demon-
strated that there is an equilibrium where the ruthenium
moves its agostic bonding from one side of the allyl to

w xthe other 1 .
In the case of the partially deuterated cycloheptenyl

ring, this results in the ruthenium moving between an
agostic deuterium and an agostic hydrogen and leads to
a mixture of compounds with the ruthenium attached to
an agostic deuterium or an agostic hydrogen in approxi-

Ž .mately equal quantities see Scheme 2 . The signals at d
2 Ž31 31 .64.8 and 33.4, J P, P s33 Hz, are tentatively as-

signed to the species with the agostic deuterium, while
the signals at d 65.2 and 33.6 are assigned to the
species with the agostic hydrogen. The difference in
chemical shifts is an example of the secondary isotope
effect.

wŽ 5 . Ž . xThe reaction of h -C H RuCl PPh with H is7 9 3 2 2
illustrated in Scheme 3.

wŽ 5The mechanism of the reaction of h -
. Ž . xC H RuCl PPh with dihydrogen is unknown.7 9 3 2

There are two reasonable mechanisms. It is known that
wŽ 5 . Ž .xh -C R RuCl dippe , R s H, Me, dippe s5 5

i i wŽ 5Pr PCH CH PPr , reacts with H to give h -2 2 2 2 2
. Ž .xq w x wŽ 5C R RuH dippe 18 . Alternatively, h -5 5 2
. Ž i .xC Me RuCl PPr Ph reacts with hydrogen to give5 5 2

wŽ 5 . Ž . Ž i .x w xh -C Me RuCl H PPr Ph 19 Hence, it would5 5 2 2
be reasonable to suggest that dihydrogen reacts with
wŽ 5 . Ž . x wŽ 5 .h -C H RuCl PPh to give either h -C H -7 9 3 2 7 9

Ž . xq wŽ 5 . Ž .Ž .xq 2RuH PPh or h -C H RuCl H PPh .2 3 2 7 9 2 3
There is circumstantial evidence for the latter route.
wŽ 5 . Ž .x wŽ 5h -C H RuCl dppe was prepared by heating h -7 9

. Ž . xC H RuCl PPh with an excess of dppe. Subse-7 9 3 2
wŽ 5 . Ž .xquent treatment of h -C H RuCl dppe with dihy-7 9

2 These compounds could be either dihydrogen or dihydride com-
plexes.
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31 wŽ 5 . Ž x Ž .Fig. 5. 162 MHz P NMR spectrum of h -C H RuCl PPh recorded at y408C after reaction with D at y68C. a The complete spectrum;7 9 3.2 2
Ž . wŽ 3 . Ž . x.b the expansion of the signals due to h -C H D RuCl PPh .7 9 2 3 2

drogen gave no reaction even after treating for 1 h at
908C. This observation gives support for the need for
PR dissociation prior to reaction with dihydrogen. A3
determination of the kinetics of PPh displacement from3
wŽ 5 . Ž . x Ž .h -C H RuCl PPh by P C H Me-4 and by7 9 3 2 6 4 3

wŽ 5 . Ž . xScheme 2. The reaction of h -C H RuCl PPh with D to give7 9 3 2 2
a thermal equilibrium Ru–D–C and Ru–H–C agostic allyl com-
plexes.

wŽ 5 . Ž . xScheme 3. The reaction of h -C H RuCl PPh with dihydro-7 9 3 2
gen.

Ž .pyridine showed that for P C H Me-4 there are two6 4 3
pathways for the reaction, an associative and a dissocia-
tive mechanism, while for pyridine, the reaction was

w xexclusively dissociative 20 . In both cases, the reaction
proceeded at a steady rate at y298C.

If the first step of the reaction is the loss of PPh3
wŽ 5followed by reaction with hydrogen to give h -

. Ž .Ž .x 3C H RuCl H PPh , then the formation of7 9 2 3
w Ž .Ž . xRuCl H PPh is readily explained by the reaction of3 3

w Ž .Ž . xan intermediate such as RuCl H PPh with the free3 2
PPh in solution. As the starting compound contains3
only two PPh ligands per ruthenium, the formation of3
w Ž .Ž . xRuCl H PPh requires the formation of a ruthenium3 3
species with one or no PPh ligand per ruthenium.3
There are additional hydride signals observed at d

y7.7 and y9.9 due to an unidentified ruthenium hy-
dride. In addition there are a number of weak 31 P NMR
signals observed.

wŽ 5 . Ž . x wŽ 3The reduction of h -C H RuCl PPh to h -7 9 3 2
. Ž . xC H RuCl PPh is an example of the very rare7 11 3 2

reduction of a coordinated ligand where the ligand

3 This compounds could be either a dihydrogen or dihydride
complex.
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remains coordinated to the metal. This has been ob-
wŽ 5 . xserved for h -C H Ni , which has been reduced to5 5 2

wŽ 3 .Ž 5 . x w xh -C H h -C H Ni 21 . There have been other5 7 5 5
w x w xexamples involving zirconium 22 , chromium 23 ,

w x w x w xmolybdenum 24 , rhenium 25 , iron 26 and cobalt
w x27 . There are numerous examples of ligand reduction
resulting in the loss of the ligand. The most relevant
example of hydride transfer to a coordinated ligand

wŽ 5followed by loss, is the example of h -
. Ž .Ž .xqC H RuH CO PPh in acetonitrile where cy-5 5 2 3

w Ž .Ž . Ž .xqclopentadiene is lost and RuH CO CNMe PPh3 3
w xis formed 28,29 . A similar reaction is observed when

wŽ 5 . Ž . xh -C H Mo CO H reacts with acetonitrile to give5 5 3
w Ž . Ž . x w xcyclopentadiene and Mo CO NCMe 30 .3 3

2. Experimental
1H, 13C, and 31 P NMR spectra were recorded on a

Bruker WH400 spectrometer. The GLC analysis was
performed using a Perkin-Elmer 8700 GC with a
Chrompak CPSIL5 30 m column.

w xThe syntheses of cycloheptadiene 16 and
w Ž .Ž . x w xRuCl H PPh 31 have been described previously.3 3

[( 5 ) ( ) ]2.1. Preparation of h -C H RuCl PPh7 9 3 2

Ž . ŽRuCl PnH O 1.2 g, 0.0048 moles in dioxan 2003 2
.ml was refluxed for 5 min. After cooling to room

Ž .temperature, triphenylphosphine 4.8 g, 0.018 moles
was added to the solution. The resulting solution was
stirred for two days, and the dark brown solution
c h a n g e d to lig h t g re e n y e llo w . 1 ,8 -

w x Ž 3.Diazabicyclo 5.4.0 undec-7-ene 2.6 cm was injected
into the solution and the solution was refluxed with
hydrogen bubbling through it for 1 h, when a violet
coloured solution was formed. Degassed cyclohepta-

Ž 3 .triene 1.8 cm , 1.58 g, 0.017 moles was added, and
the solution refluxed for 40 min. The solution was then
allowed to cool to room temperature. A white grey solid
precipitated and was filtered off. The solution was
concentrated until fine bright yellow crystals separated.

ŽAfter recrystallisation either from THF or dioxan 20
3. 3cm , it was filtered and washed with 4 cm of 40–608C

petroleum ether, and dried on the vacuum line. Yield:
Ž .3.54 g, 81%. Purity: calc. % : C, 68.47; H, 5.21; Cl,

4.7; anal: C, 68.05; H, 5.16, Cl, 4.82.

[( 5 ) ( )]2.2. Preparation of h -C H RuCl DPPE in toluene7 9

Ž .A solution of DPPE 107.1 mg in degassed toluene
Ž 3 . wŽ 510 cm was added to solution of h -

. Ž . x Ž .C H RuCl PPh 200 mg, 0.27 mmoles in toluene7 9 3 2
Ž 3.5 cm in a nitrogen filled Schlenk tube. The solution
was refluxed for 1 h then was cooled to room tempera-

Žture, and degassed petroleum ether b.p. range 45–658C;
3.2 cm was slowly added for crystallisation. The yield

of the crude product was 0.16 g.

The sample was characterized by 31 P NMR spec-
troscopy, two signals at d 73.8 and 69.1. The product is
quite stable in solution. When exposed to air for two
days, the yellow coloured solution slowly changed to
dark green.
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